1,867 research outputs found

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page

    The detection of tethered and rising bubbles using multiple acoustic techniques

    No full text
    There exists a range of acoustic techniques for characterizing bubble populations within liquids. Each technique has limitations, and complete characterization of a population requires the sequential or simultaneous use of several, so that the limitations of each find compensation in the others. Here, nine techniques are deployed using one experimental rig, and compared to determine how accurately and rapidly they can characterize given bubble populations. These are, specifically (i) two stationary bubbles attached to a wire; and (ii) injected, rising bubble

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KVK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logk/loglogk)O(\log k/\log \log k), where k=Kk = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logk)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Does the Babcock--Leighton Mechanism Operate on the Sun?

    Full text link
    The contribution of the Babcock-Leighton mechanism to the generation of the Sun's poloidal magnetic field is estimated from sunspot data for three solar cycles. Comparison of the derived quantities with the A-index of the large-scale magnetic field suggests a positive answer to the question posed in the title of this paper.Comment: 5 pages, 2 figures, to apper in Astronomy Letter

    Gravitational Helioseismology?

    Get PDF
    The magnitudes of the external gravitational perturbations associated with the normal modes of the Sun are evaluated to determine whether these solar oscillations could be observed with the proposed Laser Interferometer Space Antenna (LISA), a network of satellites designed to detect gravitational radiation. The modes of relevance to LISA---the l=2l=2, low-order pp, ff and gg-modes---have not been conclusively observed to date. We find that the energy in these modes must be greater than about 1030ergs10^{30} \rm{ergs} in order to be observable above the LISA detector noise. These mode energies are larger than generally expected, but are much smaller than the current observational upper limits. LISA may be confusion-limited at the relevant frequencies due to the galactic background from short-period white dwarf binaries. Present estimates of the number of these binaries would require the solar modes to have energies above about 1033ergs10^{33} \rm{ergs} to be observable by LISA.Comment: 8 pages; prepared with REVTEX 3.0 LaTeX macro

    The Geometry of Entanglement Sudden Death

    Get PDF
    In open quantum systems, entanglement can vanish faster than coherence. This phenomenon is usually called sudden death of entanglement. In this paper sudden death of entanglement is discussed from a geometrical point of view, in the context of two qubits. A classification of possible scenarios is presented, with important known examples classified. Theoretical and experimental construction of other examples is suggested as well as large dimensional and multipartite versions of the effect.Comment: 6 pages, 2 figures, references added, initial paragraph corrected, sectioning adopted, some parts rewritten; accepted by New J. Phy
    corecore